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Results of experimental investigation of the heat exchange in a plasma module which incorporates a
mixing chamber and three plasmatrons operating on it are generalized by the methods of physical
modeling with the use of regression analysis. It is shown that the heat exchange in such a system is
determined by the processes occurring in arc heaters. The most substantial influence is exerted by
convection and radiation.

Introduction. One promising trend in the application of a thermal plasma is associated with the use
of reactors in which several electric-arc plasmatrons (EAPs) operate on a single multiarc mixing chamber
(MMC) [1, 2]. This method makes it possible to obtain flat profiles of temperature and velocity of the heat-
transfer agent in the channel of a plasmachemical reactor (PRC), which increases the degree of processing the
dispersed raw material introduced into the reactor. Use is usually made of three-jet mixing chambers that
allow the formation of quite uniform distributions of parameters over the cross section of the reactor.

An analysis of the existing experimental data on the plasmachemical reactors that are used to process
dispersed inorganic materials and solutions [1–5] shows that a crucial influence on the heat exchange in them
is exerted by the initial unstabilized portion of the gas flow. The heat-exchange process here is complicated
by the presence of significant axial gradients of velocity and temperature and by the presence of radial ones
in the boundary region, turbulization of the gas by an arc in plasmatrons, by the disturbing action of the
reagent jets on the flux in the reactor channel, and by the occurrence of separating flows at the sites of un-
even introduction of plasma jets into the mixing chamber.

Under such conditions, theoretical determination of heat transfer in plasmachemical reactors by the
methods of mathematical modeling is difficult. Therefore, one often has to resort to using experimental data
and to obtain on their basis formulas to describe the regularities of a phenomenon. Sometimes experimental
dependences are assigned the form of simple empirical expressions reflecting the interrelationship between the
initial physical quantities. However, the most convenient and substantiated form of description will be a pres-
entation and corresponding processing of experimental results using dimensionless similarity numbers that are
generalized variables whose form is determined by the methods of the theory of similarity and dimensions.

But, indeed, the application of the theory of similarity to electric-arc discharges and plasma devices
(multiarc mixing chambers, plasma reactors, hardening systems) also involves a number of difficulties. They
are due to both the variety of the processes occurring in the discharge or a device and the wide temperature
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range. The great body of initial data characterizing this variety generates a great number of their combina-
tions in the form of dimensionless numbers and similarity numbers the total quantity of which is, in principle,
not limited by anything. True, the number of determining criteria that are independent of each other and
called fundamental [6] is always smaller than the total number of all independent (with account taken of the
conditions of unambiguity) initial variables and parameters. However, identification of a set of such criteria
using physical modeling is a matter of certain intuition under these conditions. This task can be facilitated by
the methods of statistical processing of the experiment and of regression analysis in generalized variables [7].

Generalization of experimental data on the heat transfer in a plasmachemical reactor has until recently
been performed with a method that is traditional for this kind of heat-exchange apparatus, in which it is per-
missible that the processes in the arcs do not exert a direct influence on the processes in the reaction space
of the apparatus. The level of enthalpy at the inlet to the chamber and the reactor is assigned in advance and
is not related to the parameters of the arcs in the plasmatrons. Meanwhile, taking account of the influence of
plasmatrons would probably make it possible to consider the physical processes occurring in these objects
(located one after another) in a certain interrelationship. This approach could improve the accuracy of gener-
alization or simplify the calculational procedure, all other things being equal. To obtain this kind of general-
ized dependence, it is necessary to conduct experiments in which it is obligatory to have a simultaneous
fixation of parameters in both the reactors and the plasmatrons.

In connection with the above, we set ourselves the task of adapting the method of physical modeling
of arc discharges to statistical generalization of the parameters of heat transfer in a plasmachemical reactor
with the example of experimental data on the heat exchange of the plasma jets with the walls of the plasma
module, i.e., a cylindrical multiarc mixing chamber (CMMC) with three plasmatrons. Adaptation implies tak-
ing account of the prehistory of the flow.

1. Problems of Physical Modeling of Plasma Reactors. The main problems inherent in physical
modeling of arc discharges are considered in [7]. The initial set of independent variables in the regression
method of obtaining generalized volt-ampere characteristics (VACs) of the arc in different plasmatrons in-
cluded the following basic similarity numbers that take into account one or another process of transfer of the
energy of Joule dissipation: πconv = Gdσ0h0/I2, convective transfer, πcond = σ0λ0T0d2/I2, conductive transfer,
πrad = σ0Q0d4/I2, transfer by radiation, and πturb = σ0ρ0h0

1.5d3/I2, turbulent transfer.
To generalize experimental data on the heat exchange in reactor devices with multiarc mixing cham-

bers, as a rule, we used an approach based on an analogy with high-temperature heat exchange between the
gas flow and the wall of the tube. At the same time, the Nusselt number Nu or the Stanton number St [1, 8]
is used as a generalized function, and the Reynolds number Re and the Prandtl number Pr are used as the
main independent variables. In [8], dissociation was taken into account using the enthalpy factor. We note
that a distinction is also drawn between generalization of data on heat exchange for the internal problem
(with respect to the temperature in a given cross section and the diameter of the tube) and for the external
problem (with respect to the temperature at the entrance to the tube and the distance from the entrance, i.e.,
as in the case of external flow about a plate). In the former case it is necessary to determine the temperature
change along the tube and to use it to select the parameters of thermophysical properties. In the latter case
the calculation becomes simpler, since the temperature change is not taken into account. Correction factors
for the initial portion are also introduced.

The positive aspect of this approach is that the obtained expressions possess a certain universality,
since they are suitable for calculation of heat exchange irrespective of the method of heating the working
body (electric-arc body or any other one). However, this leads, first, to calculation involving intermediate
stages, multistage calculations, and parameters that are not recorded in the experiment, which increases the
computational error. Second, under conditions of industrial production, heating to temperatures above 2000–
2500 K is always in some way problematic for methods other than electric-arc ones. Therefore, the advantage
of universality of the obtained expressions remains unclaimed.

220



In this connection, one can propose a new approach that considers a plasmachemical reactor as a
single system consisting of one or several electric-arc plasmatrons, a mixing chamber, and a reactor channel
(RC). The heat exchange in the multiarc mixing chamber and in the reactor channel of the plasmachemical
reactor is assumed to depend among other things also on the processes occurring in electric-arc heaters. The
system electric-arc plasmatron–multiarc mixing chamber–reactor channel "remembers" this sufficiently well,
and in relatively short devices the processes in the heaters must be of prime importance for the entire system,
including the reactor channel.

Taking into account the above, it is expedient to introduce criteria, which were used earlier in gener-
alizing experiments on the heat exchange in electric-arc plasmatrons with a longitudinally blown arc, into the
initial hypothetical system of criteria to describe heat exchange in plasmachemical reactors. This is first of all
not only such a generalized argument as πconv,d = σ0h0Gd/I2, but also the criterion πrad,d = σ0Q0d

4/I2. It is
expedient to apply the Stanton number St = qwπDr.c

2 /4G(h − hw) or η
__

 = (1 − η)/η [9]. The latter quantity is
an analog of the St number for its low values and is called a generalized thermal efficiency.

2. Use of Correlation and Regression Analyses. Processing of experimental data is an important
stage of investigations. We have used the Statistica for Windows computer program of statistical processing
(StatSoft Company) which makes it possible to carry out correlation and regression analyses [10]. The prob-
lems of regression analysis are: (a) obtaining the best point and interval estimates of the known parameters
of regression, (b) checking the hypotheses relative to these parameters, (c) checking the adequacy of the
model assumed, and (d) checking the set of corresponding assumptions. The magnitude of the linear depend-
ence between two variables is measured using a simple correlation coefficient, whereas the magnitude of the
linear dependence of one variable on several variables is determined by a multiple correlation coefficient.
Approximations of the functional relations by exponential expressions are the most widespread.

The level of influence of a certain argument in the regression equation can quantitatively be evaluated
by the magnitude of the standardized coefficients and by the partial value of the ratio of Fisher variances.

To analyze the dominant mechanisms exerting a primary influence on the heat exchange in a multiarc
mixing chamber we applied the generalized exponential expression analogous to [11, 12]:

 πdep = C Ï
i
 πind,i

Bi  . (1)

Linearization of relation (1) is carried out using decimal logarithms. The initial set of independent
variables includes those variables that reflect different mechanisms of heat exchange.

In selecting the dominant similarity numbers for description of heat exchange in a multiarc mixing
chamber, we used the program of multiple linear regression with a procedure of "forward" step testing [10].
It successively chooses the independent parameters (regressors) that ensure the maximum value of the deter-
mination coefficient R2; when several regressors are introduced into the model one refines their relative con-
tribution. The selection is completed when, upon introduction of the next regressor, the Fisher criterion F
turns out to be lower than the threshold characterizing the F-distribution for a given confidential probability
(one usually prescribes F = 4.0, which is close to the F-distribution in a wide range of the number of the
degrees of freedom in the case of a 95% probability of the event that the value of F will exceed the tabulated
value).

Determination of the relative contribution of individual regressors in the case of their strong correla-
tion is realized by shifting the regression coefficients using the subprogram of ridge regression that ensures
such a shift (the regularization coefficient α = 0.1 was used). In the case of ordinary (not ridge) regression,
the program selects only the most significant variables; the indicator of their relative contribution also in-
cludes the influence of processes that are strongly correlated with the selected ones and are not among the
dominant processes. Here one obtains more compact and accurate characteristics than in the case of ridge
regression.
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3. Experimental Setup. Experimental investigations were carried out on a specially prepared semi-
commercial plasma unit with a power of 150 kW; the unit was assembled on a three-jet straight-thought plas-
machemical reactor. The reactor was equipped with three d.c. electric-arc plasmatrons with a rod cathode
(PDS-3) which were installed on a cylindrical multiarc mixing chamber with an air-atomizing burner and
made it possible to treat commercial dispersed materials and dispersed solutions [1, 5]. The schematic dia-
gram of the unit is shown in Fig. 1.

In the reactor, we obtained the parameters varying in the following ranges: the mass-mean tempera-
ture of the plasma at the inlet to the cylindrical multiarc mixing chamber varied within 3900–5800 K and the
total flow rate of the gas through the reactor, including the flow rate of the plasma-generating and burner air,
varied within 8.5–13.1 g/sec.

The cylindrical multiarc mixing chamber was cooled by water with a flow rate of 5 ± 2 kg/sec. We
used constant diameters of the cylindrical multiarc mixing chamber (50 mm) and the reactor channel (65 mm)
and the length of the cylindrical multiarc mixing chamber Xm.c = 110 mm; variation of the values of the
geometric simplexes (Xm.c/Dm.c, Dm.c/Dr.c, d/Dm.c) was insignificant in the experiments and was attained by
changing (0 to 3 mm) the thickness of the skull layer of oxide products of treatment of the raw material on the
walls of the cylindrical multiarc mixing chamber. In some cases the influence of this factor was disregarded.

4. Statistical Generalization of the Parameters of Heat Exchange of the Plasma Flow in the Cy-
lindrical Multiarc Mixing Chamber of a Plasmachemical Reactor. Analysis of experimental data and gen-
eralization of the parameters of heat exchange of the plasma flow in the straight-through plasmachemical
reactor with a cylindrical multiarc mixing chamber were carried out using the above-described statistical pro-
cedure. A sample of 38 experiments was considered [5]. Tables 1–7 and Fig. 2 give results of the statistical
investigation.

 η
__

 = 35.4 




I2

Gdσ0h0





0.933

 




σ0Q0d4

I2





0.639

 




G3pl

G3pl + Gg.d





2.070

 . (2)

Fig. 1. Schematic diagram of the experimental setup for treatment of dis-
persed solutions based on a three-jet plasmachemical reactor: 1, 2) vessel
with raw material; 3) burner; 4) mixing chamber; 5) plasmatrons; 6) re-
actor channel; 7) bin; 8) filter for collection of dispersed products of
treatment; 9) manometer; 10) vacuumized flasks; 11) system of sampling
of waste gases for analysis; 12) units of control of the raw-material tem-
perature.
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TABLE 1. Regression Parameters for the Generalized Efficiency of a Plasma Module (multiarc mixing chamber
with three plasmatrons) (ordinary regression)

Parameters Variables β Error of β B Error of B Student
quantile

Probability
level

Air
R = 0.868
R2 = 0.753
SE = 0.056
F(3.34) = 34.5
dDW = 1.59

c – – 1.549 0.185 8.36 0.000

πconv′ 1.976 0.293 0.933 0.138 6.75 0.000

πrad 1.255 0.293 0.639 0.149 4.29 0.000

G3pl ⁄ (G3pl + Gg.d) 0.230 0.086 2.070 0.773 2.68 0.011

TABLE 2. Correlation Matrix for the Generalized Efficiency of a Plasma Module (multiarc mixing chamber with
three plasmatrons)

Generalized variables πconv′ πcond πrad πturb Xm.c ⁄ Dm.c G3pl ⁄ (G3pl + Gg.d) d ⁄ Dm.c η
__

πconv′ 1.00 –0.96 –0.96 –0.96 0.11 –0.06 –0.10 0.76

πcond –0.96 1.00 1.00 1.00 –0.11 0.02 0.10 –0.63

πrad –0.96 1.00 1.00 1.00 –0.11 0.02 0.10 –0.63

πturb –0.96 1.00 1.00 1.00 –0.11 0.02 0.10 –0.63

Xm.c ⁄ Dm.c 0.11 –0.11 –0.11 –0.11 1.00 0.16 –1.00 0.18

G3pl ⁄ (G3pl + Gg.d) –0.06 0.02 0.02 0.02 0.16 1.00 –0.15 0.14

d ⁄ Dm.c –0.10 0.10 0.10 0.10 –1.00 -0.15 1.00 –0.16

η
__

0.76 –0.63 –0.63 –0.63 0.18 0.14 –0.16 1.00

TABLE 3. Regression Parameters for the Generalized Efficiency of Plasmatrons (ordinary regression)

Parameters Variables β Error of β B Error of B Student
quantile

Probability
level

Air
R = 0.858
R2 = 0.737
SE = 0.067
F(3.34) = 31.7
dDW = 1.74

c – – 1.459 0.222 6.57 0.000

πconv′ 1.704 0.302 0.935 0.166 5.64 0.000

πrad 0.947 0.302 0.561 0.179 3.14 0.004

G3pl ⁄ (G3pl + Gg.d) 0.242 0.089 2.531 0.926 2.73 0.010

TABLE 4. Correlation Matrix for the Generalized Efficiency of Plasmatrons

Generalized
variables πconv′ πcond πrad πturb Xm.c ⁄ Dm.c G3pl ⁄ (G3pl + Gg.d) d ⁄ Dm.c η

__

pl

πconv′ 1.00 –0.96 –0.96 –0.96 0.11 –0.06 –0.10 0.79

πcond –0.96 1.00 1.00 1.00 –0.11 0.02 0.10 –0.68

πrad –0.96 1.00 1.00 1.00 –0.11 0.02 0.10 –0.68

πturb –0.96 1.00 1.00 1.00 –0.11 0.02 0.10 –0.68

Xm.c ⁄ Dm.c 0.11 –0.11 –0.11 –0.11 1.00 0.16 –1.00 0.26

G3pl ⁄ (G3pl + Gg.d) –0.06 0.02 0.02 0.02 0.16 1.00 –0.15 0.17

d ⁄ Dm.c –0.10 0.10 0.10 0.10 –1.00 –0.15 1.00 –0.25

η
__

pl 0.79 –0.68 –0.68 –0.68 0.26 0.17 –0.25 1.00
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As the dependent variable in (1) we used the magnitudes of the generalized thermal efficiency η
__

 of
the plasma module (multiarc mixing chamber with three plasmatrons), the generalized efficiency of the mix-
ing chamber separately and the generalized efficiency of the plasmatrons themselves, and the Stanton number
for the first two of these three cases.

The corresponding generalized formulas following from the data of the tables are written after each
table with regression parameters for the generalized efficiency or the St number. In the expressions for the
Stanton number in individual additional calculated variants we used the diameter of the anode of a plasma-
tron d or the diameter of the mixing chamber Dm.c and not the diameter of the reactor Dr.c.

If the Stanton numbers are calculated from the diameter of the anode of the plasmatron d and from
the diameter of the mixing chamber Dm.c, the formulas corresponding to expression (5) will have the form

η
__

pl = 28.77 




I2

Gdσ0h0





0.935

 




σ0Q0d4

I2





0.561

 




G3pl

G3pl + Ggd





2.351

 . (3)

η
__

m.c = 1.535 




I2

Gdσ0h0





0.598

 




σ0Q0d4

I2





0.514

 . (4)

TABLE 5. Regression Parameters for the Generalized Efficiency of a Mixing Chamber (ordinary regression)

Parameters Variables β Error of β B Error of B Student
quantile

Probability
level

Air
R = 0.561
R2 = 0.315
SE = 0.069
F(3.34) = 8.043
dDW = 1.52

c – – 0.186 0.220 0.85 0.403

πconv′ 1.678 0.477 0.598 0.170 3.52 0.001

πrad 1.335 0.477 0.514 0.183 2.80 0.008

TABLE 6. Regression Parameters for the Stanton Number that Refers to the Plasma Module (multijet mixing
chamber with three plasmatrons) (ordinary regression)

Parameters Variables β Error of β B Error of B Student
quantile

Probability
level

Air
R = 0.854
R2 = 0.730
SE = 0.054
F(3.34) = 30.64
dDW = 1.567

c – – 0.204 0.181 1.13 0.268

πconv′ 1.849 0.306 0.818 0.135 6.04 0.000

πrad 1.122 0.306 0.535 0.146 3.67 0.001

G3pl ⁄ (G3pl + Gg.d) 0.240 0.090 2.022 0.756 2.67 0.011

TABLE 7. Regression Parameters for the Stanton Number that Refers to the Mixing Chamber (ordinary regression)

Parameters Variables β Error of β B Error of B Student
quantile

Probability
level

Air
R = 0.578
R2 = 0.334
SE = 0.052
F(2.35) = 8.78
dDW = 1.356

c – – –0.540 0.167 –3.24 0.003

πconv′ 1.733 0.470 0.475 0.129 3.69 0.001

πrad 1.381 0.470 0.408 0.139 2.94 0.006
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St = 
qwπDr.c

2

4G (h − hw)
 = 1.6 





I2

Gdσ0h0





0.818

 




σ0Q0d4

I2





0.535

 




G3pl

G3pl + Gg.d





2.022

 . (5)

St = 
qwπd2

4G (h − hw)
 = 0.495 





I2

Gdσ0h0





0.825

 




σ0Q0d
4

I2





0.557

 




G3pl

G3pl + Gg.d





1.961

 ,   R = 0.856 , (6)

St = 
qwπDm.c

2

4G (h − hw)
 = 0.974 





I2

Gdσ0h0





0.841

 




σ0Q0d
4

I2





0.560

 




G3pl

G3pl + Gg.d





2.057

 ,   R = 0.841 . (7)

Stm.c = 
qw.m.cπDm.c

2

4G (h − hw)
 = 0.288 





I2

Gdσ0h0





0.475

 




σ0Q0d
4

I2





0.408

 . (8)

In calculating the independent variable from the plasmatron-anode diameter d, we obtain the follow-
ing dependence instead of (8):

Stm.c = 
qw.m.cπd2

4G (h − hw)
 = 0.092 





I2

Gdσ0h0





0.299

 




σ0Q0d4

I2





0.259

 




G3pl

G3pl + Gg.d





3.023

 ,   R = 0.785 . (9)

Returning to the procedure of obtaining generalized formulas, we note that we included first of all the
already mentioned πcond, πconv, πrad, and πturb [7] or the inverse combinations πconv

′  = I2Gdσ0h0 and πrad
′  =

I2σ0Q0d4 into the initial set of the assumed significant independent variables. The parametric criteria
Xm.c /Dm.c (ratio of the length of the cylindrical multiarc mixing chamber to its diameter), G3p1/(G3p1 + Gg.d)
(ratio of the total mass flow rate of the plasma-generating gas to the total flow rate of the gas), and d/Dm.c

(ratio of the diameters of the plasmatron nozzle and the cylindrical multiarc mixing chamber) were used ad-
ditionally. The characteristic properties appearing in the similarity numbers were determined according to the
method of [7] that takes into account the dependence of plasma properties on temperature.

Since the processes of heat exchange occurring in the plasma module are interrelated, some of the
independent variables that represent them turn out to be strongly correlated, which can be seen, for example,
in the correlation matrix for the generalized efficiency of a plasma module (Fig. 2). Here, the relative role of
individual variables is refined by shifting the regression coefficients (see Section 2). However, judging from
the coefficient of multiple correlation between the regressors and the dependent variable, better "quality" in
most of the calculated cases is provided by the ordinary form of regression and not by the ridge form.

Tables 1, 3 and 5–7 give the generalized arguments whose influence goes beyond the errors and the
values of the coefficient of multiple correlation R, the determinant (determination coefficient) R2, the regres-
sion ratio of Fisher variances F, and the standard error of regression SE. The relative role of individual vari-
ables is mainly reflected by the magnitude of the standardized coefficient β. Their values show that the
convective mechanism and radiation exert the strongest influence on the intensity of heat exchange between
the plasma and the plasma-module walls. Thus, for πrad we found the values β = 1.255 in the case of regres-
sion for the generalized efficiency of a plasma module, β = 0.947 in the case of regression for the general-
ized efficiency of plasmatrons, and β = 1.122 in the case of regression for the Stanton number referring to
the plasma module. This confirms the assumption that in describing of the heat exchange in three-jet electric-
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arc plasma modules and in reactors based on them one must take into account not only the convective
mechanism of transfer of the Joule-dissipation energy but the radiative mechanism as well.

Furthermore, the relative concentration of the plasma-generating gas in the total mass of the gas in-
troduced into the multiarc mixing chamber through plasmatrons and burners, i.e., G3p1/(G3p1 + Gg.d), turned
out to be one more independent variable that also has a significant effect on the heat transfer in this plasma
module.

On the whole, we should also note that the "quality" of regression generalizations obtained for the
generalized thermal efficiencies and the Stanton number of this plasma module is quite acceptable, since the
coefficients of multiple correlation are moderately high while the remaining parameters of regression gener-
alizations (ratio of Fisher variances, Student quantiles for the coefficients of the equation, and Durbin–Watson
criterion for the residuals dDW [10]) are statistically valid. In particular, in the case of regression for the gen-
eralized efficiency of the plasma module (Table 1) R = 0.868, in the case of regression for the generalized
efficiency of plasmatrons (Table 3) R = 0.858, and in the case of regression for the Stanton number referring
to the plasma module (Table 6) R = 0.854.

In Table 8 and the corresponding criterial formulas following it, we give results of a regression analy-
sis of the generalized volt-ampere characteristic for the plasmatrons which are used in this plasma module
(sample of 114 points). The function Udσ0/I is used as πdep [11, 12]. As is seen, generalization of the volt-

Fig. 2. Matrix of the graphs of dispersion of experimental points for dif-
ferent pairs of variables for regression of the generalized efficiency of a
plasma module (multijet mixing chamber with three plasmatrons): lines,
graphs of the linear probability dependence, rectangles, experimental
points, and diagonal of the matrix, distribution diagrams of random quan-
tities. The notation of the variables is as follows: 1) πconv

′ , 2) πcond, 3)
πrad, 4) πturb, 5) Xm.c/Dm.c, 6) G3pl/(G3pl + Gg.d), 7) d/Dm.c, and 8) (1
− η)/η (generalized efficiency).
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ampere characteristic is rather good in this case (R = 0.966 for a nonridge regression) and agrees with the
results (obtained earlier [11, 12]) of large-scale generalizations for linear plasmatrons with a longitudinally
blown arc and a rod cathode operating with air. The determined values of the coefficients β = 0.710 for
convection and β = 0.264 for radiation point to the similar hierarchy (convection ranks first and radiation
ranks second) of the mechanisms of energy transfer that determine both the heat transfer in the plasma mod-
ule (see Table 1) and the volt-ampere characteristic of the plasmatrons.

Udσ0

I
 = 3.44 





I2

Gdσ0h0





−0.464

 




σ0Q0d4

I2





0.187

 ,   ordinary  regression , (10)

Udσ0

I
 = 9.12 





I2

Gdσ0h0





−0.299

 




I2

λ0d2σ0T0





−0.170

 




σ0Q0d4

I2





0.187

 ,   ridge  regression . (11)

Conclusions. With the example of experimental data on the heat exchange of plasma jets and the
flow of an air plasma with water-cooled walls of a plasma module, i.e., a cylindrical mixing chamber (with
a diameter of 0.05 m and a total length of 0.11 m) with three d.c. plasmatrons operating on it, we have
established the possibility of adapting the method of physical modeling of arc discharges to statistical gener-
alization of the parameters of high-temperature heat transfer in a straight-through multijet plasmachemical re-
actor.

As a result of the investigations, we have obtained the corresponding criterial regression equations for
the generalized thermal efficiencies and the Stanton number of the plasma module and the plasmatrons char-
acterized by the coefficient of multiple correlation R = 0.841–0.868. The coefficient of multiple regression for
the volt-ampere characteristic attains R = 0.966.

Analysis of the obtained regression equations (including that of the values of the standardized coeffi-
cients β) shows that the strongest influence on the intensity of heat exchange between the plasma and the
walls of the plasma module is exerted by convection and radiation. This substantiates the hypothesis of the
necessity of taking simultaneous account of these mechanisms in describing heat exchange in three-jet plasma
reactors.

TABLE 8. Regression Parameters for the Generalized Volt-Ampere Characteristic of an Arc in Linear Plasmatrons
with a Rod Cathode that Operate with Air

Parameters Variables β Error of β B Error of B Student
quantile

Probability
level

Ordinary regression

R = 0.966
R2 = 0.933
SE = 0.040
F(2.111) = 766.77
dDW = 0.71

c – – 0.537 0.069 7.74 0.000

πconv 0.710 0.082 0.464 0.053 8.68 0.000

πrad 0.264 0.082 0.187 0.058 3.23 0.002

Ridge regression

R = 0.945
R2 = 0.894
SE = 0.050
F(3.110) = 307.94
dDW = 0.84

c – – 0.960 0.099 9.72 0.000

πconv 0.458 0.064 0.299 0.042 7.13 0.000

πrad 0.240 0.077 0.170 0.054 3.12 0.002

πcond 0.240 0.077 0.170 0.054 3.12 0.002
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NOTATION

T, temperature; σ, electrical conductivity; h, enthalpy; λ, thermal conductivity; Q, volume emissivity;
ρ, density; G, flow rate of the gas; d, diameter of the anode of the plasmatron; D and X, diameter and length
of the plasma device respectively; U, voltage; I, current strength; q, density of the heat flux to the reactor
wall; η, thermal efficiency; η

__
 = (1 − η)/η, generalized thermal efficiency; C, constant; c = ln C; B, exponent;

β, standardized correlation coefficient; R, coefficient of multiple correlation; R2, determination coefficient;
SE, standard error of regression; F, Fisher criterion (variance ratio); dDW, Durbin–Watson criterion for the
residuals of regression; π, generalized variables. Subscripts: 0, determining value; w, wall; dep and ind, de-
pendent and independent variables respectively; conv, cond, rad, and turb, convective, conductive, radiant,
and turbulent heat transfer respectively; pl and 3pl, one or three plasmatrons respectively; g.d, cold (injected
through the nozzle) gas; m.c, mixing chamber; r.c, reactor channel; d, diameter of the anode of the plasma-
tron.
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